Addition and subtraction

- Add and subtract numbers using concrete objects, pictorial representations.
- All number facts for all numbers 1-10 are secure by the end of Year 1 in order to progress and consolidate decimal numbers in KS2.
- From Year 2, inverse of addition and subtraction to be used to check both written and mental calculations.
- All methods must be supported using a range of counting resources such as numicon, cubes, dienes, coins, counters, bead strings, number tracks, number lines, number squares, cuisinaire, dice, place value counters, double sided counters
- Develop visualising an increasing amount of numbers

	Recall/mental	Mental strategies	Written	Examples	Problem solving
Year 1	To represent and	 count on or back; 	Read, write and	Counting all leading to <u>counting on</u> .	Solve one-step
	use number bonds	 biggest number first; 	interpret	0 0 0 0 0 0	problems that involve
	and related	 begin to bridge; 	mathematical		addition and
	subtraction facts	 use known number facts 	statements involving	0 12 0	subtraction, using
	for all numbers 1-	and place value to add or	addition (+),		concrete objects and
	20.	subtract	subtraction (-) and	Counting on using a number track	pictorial
		pairs of single-digit	equals (=) signs	1 2 3 4 5 6 7 8 9 18 11 12 13 14 18	representations, and
	Add and subtract	numbers;			missing number
	one-digit and two-	 add 9 to single-digit 		+ <u>Counting on</u> using a number line	problems such as
	digit numbers to	numbers by adding 10 then	Add and subtract	7+4	7 = □ - 9; 20 - □ = 9;
	20, including zero.	subtracting 1;	numbers including:	$\wedge \wedge \wedge \wedge$	15 – 9 = 🗆; 🗆 - 🗆 =
		 identify near doubles, 	*a one digit number		11; 16 − 0 = □
		using doubles already	and ones	0 1 2 5 4 5 0 7 6 7 10 11 12	
		known;	* a two-digit		
		 use patterns of similar 	number and ones	Taking away as counting back	
		calculations eg. 2 + 3 = 5 so			
		2 + 4 must be 6 (4 is one			
		more than 3)	*Written methods		
			are informal at this		
			stage – see mental		
			methods for		
			expectation of		
			calculations)		

				Taking away as finding a difference Taking away as finding away as finding away as finding away as fi	
Year 2	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100. Recall and use number bonds for multiples of 5 totalling 60 (to support telling time to nearest 5 minutes)	 -count on or back in tens or ones; find a small difference by counting up from the smaller to the larger number; biggest number first; add three small numbers by putting the largest number first and/or find a pair totalling 10 or 20; partition additions into tens and units then recombine; 	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs Add and subtract numbers including: * a two-digit number and ones * a two-digit number and tens	+Counting on in tens and ones $\begin{array}{r}+10 \\ & +2 \\ \hline \\23 \\ & 33 \\ \end{array}$ +Partitioning and bridging though 10 $\begin{array}{r}+2 \\ & +5 \\ \hline \\8 \\ 10 \\ \end{array}$ $\begin{array}{r}+5 \\ +5 \\ \hline \\8 \\ 10 \\ \end{array}$ $\begin{array}{r}+5 \\ & 15 \\ \hline \\+ Partitioning \\ 47 \\ \hline \\25 \\ 60 + 12 \\ \hline \\ \hline \\ \\6 \\ \end{array}$	Solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures * applying their increasing knowledge of mental and written methods
				////////	

	Add and subtract numbers mentally, including: * a two-digit number and ones * a two-digit	 bridge through 10 or 20; use known number facts and place value to add or subtract pairs of numbers; partition into '5 and a bit' when adding 6, 7, 8 or 9, then recombine; 	*Written methods are informal at this stage	Leading to exchanging + Expanded written method 40 + 7 + 20 + 5 = 40 + 20 + 7 + 5 = 40 + 7 + 20 + 5 = 40 + 7 + 20 + 5 = 40 + 7 + 20 + 5 =	Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change.
	 number and tens * two two-digit numbers * adding three one- digit numbers 	 add of subtract 9, 19, 11 or 21 by rounding and compensating; identify near doubles; use patterns of similar calculations; eg. 2 + 3 = 5 so 2 + 4 must be 6 (4 is one 		60 + 12 = 72 $-25 27 37$ $-2 -10$	
		more than 3) – use the relationship between addition and subtraction.		Counting on to take away. +1 $+239$ 40 $42Link to finding a difference.Continue to use the bar model$	
				Continue to use the bar model. Towards a written method for subtraction Use dienes to partition and take away, first without exchange, then with exchange.	
Year 3	Recall and use addition and subtraction facts for 100 (multiples of 5 and 10) Derive and use addition and	 count on or back in tens or ones; find a small difference by counting up from the smaller to the larger number; biggest number first; 	Add and subtract numbers with up to three digits, using informal methods, progressing to formal written methods of	 Partition into tens and ones Partition both numbers and recombine. Count on by partitioning the second number only e.g. 247 + 125 = 247 + 100 + 20 + 5 = 347 + 20 + 5 = 367 + 5 = 372 	Solve problems, including missing number problems (including some 2- step) using number facts, place value, and more complex

for 100.numbers by putting the largest number first and/or by finding pairs totalling 9, 10 or 11; - partition into tens and units then recombine; - bridge through a multiple of 10, then adjust; - use knowledge of number and ens * a three-digit number and ens * a three-digit number and ens * a three-digit number and ens * a three-digit number and ens within 1 whole.and subtract number siste a subtract modelled with place value counters (Dienes could be used for those who need a less abstract representation)subtractionAdd and subtract number and ens * a three-digit number and tens within 1 whole Use knowledge of numbers is - add or subtract mentally a 'near multiple of 10' to or - add or subtract mentally a 'near multiple of 10' to or - say or write a subtraction statement corresponding to agiven addition statement;- Use dimense than 39); - say or write a subtraction statement;- Use dimense than 39); - say or write a subtraction statement;- Use dimense than 39); - say or write a subtraction statement;- Use dimense than 39); - say or write a subtraction statement;- Use dimense than 29); - say or write a subtraction statement;- Use dimense than 29); - say or write a subtraction statement;- Use dimense than 29); - say or write a subtraction statement;- Use dimense than 29); - say or write a subtraction statement;- Use dimense than 28; - Use dimense than 29); - say or write a subtraction statement;- Use dimense than 28; - Use dimense than 28; - Say or write a subtraction- Use dimense than 28; - Use dimense than 28; - Say or write a subtraction- Use dimense than 28; - Use dimense than 28; - Use dimense th	subtraction facts	 add three or four small 	columnar addition	+ Towards a Written Method for addition	addition and
Derive and use addition and subtraction facts for multiples of 100 totalling 1000.largest number inst stalling 9, 10 or 11; - partition into tens and units then recombine; - bridge through a multiple of 10, then adjust; - use knowledge of number and ness * a three-digit number and tens * a three-digit number and tens * a three-digit number and tens * a three-digit number and tens * a three-digit number; - bridge through a a bit' when adding 6, 7, 8 or 9; - add or subtract mentally, or subtract mentally, a 'near multiple of 10 or from a three-digit number; - lidentify near doubles; - use patterns of similar calculations eg. 12 + 27 = 39 so 12 + 37 must be 49 (49 is ten more than 39); - say or write a subtraction statement;where appropriate.Introduce columnar addition addition and a lidentify near doubles; - use patterns of similar calculations eg. 12 + 27 = 39 so 12 + 37 must be 49 Use bit addition statement;where appropriate.Introduce columnar addition 247 * 125 3272	for 100.	numbers by putting the	and subtraction		subtraction
totalling 1000.Units then recombine; - bridge through a multiple of 10, then adjust; - use knowledge of numbers mentally, including; * a three-digit number and ness * a three-digit number and ness * a three-digit number and numbers; - partition into '5 and a bit' when adding 6, 7, 8 or 9; - add or subtract mentally a 'near multiple of 10' to or from a three-digit number; - identify near doubles; - use patterns of similar calculations eg. 12 + 27 = 39 so 12 + 37 must be 49 (49 is ten more than 39); - say or write a subtraction statement;247 +125 12 0300 3724445555555555553715537553755375537553753753753753753753753753775377353773537733737733773377733777337773377377337733773377337733333333 <td>Derive and use addition and subtraction facts for multiples of 100</td> <td>largest number first and/or by finding pairs totalling 9, 10 or 11; – partition into tens and</td> <td>where appropriate.</td> <td>Introduce columnar addition modelled with place value counters (Dienes could be used for those who need a less abstract representation)</td> <td></td>	Derive and use addition and subtraction facts for multiples of 100	largest number first and/or by finding pairs totalling 9, 10 or 11; – partition into tens and	where appropriate.	Introduce columnar addition modelled with place value counters (Dienes could be used for those who need a less abstract representation)	
	for multiples of 100 totalling 1000. Add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds Add and subtract fractions with the same denominator within 1 whole.	 partition into tens and units then recombine; bridge through a multiple of 10, then adjust; use knowledge of number facts and place value to add or subtract pairs of numbers; partition into '5 and a bit' when adding 6, 7, 8 or 9; add or subtract mentally a 'near multiple of 10' to or from a three-digit number; identify near doubles; use patterns of similar calculations eg. 12 + 27 = 39 so 12 + 37 must be 49 (49 is ten more than 39); say or write a subtraction statement; 		Constraints of the second 	

				232 - 114 - 118	
Year 4	Select a mental strategy appropriate for the calculation. Add and subtract mentally combinations of two and three digit numbers and decimals to one decimal place. Recall and use addition and subtraction facts for 100. Recall and use addition and subtraction facts for multiples of 100 totalling 1000.	Apply the same strategies as in year 3 but using decimals as well as whole numbers.	Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.	 Columnar addition of 4 digit numbers modelled with place value counters. 2634 +4517 7 1 5 1 • • • • • • • • • • • • • • • • • • •	Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why. Solve addition and subtraction problems involving missing numbers.

	Add and subtract fractions with the same denominator. Derive and use addition and subtraction facts for all numbers 1- 10 (with decimal numbers to one decimal place)			• • • • • • • • • • • • • • • • • • •	
Year 5	Select a mental strategy appropriate for the numbers. Add and subtract numbers mentally with increasingly large numbers and decimals to two decimal places. Add and subtract mentally with increasingly large numbers. Derive and use addition and subtraction facts for all numbers 1- 10 (with decimal numbers to two decimal place) Recall and use addition and	Consolidate previous strategies but using two decimal places as well as whole numbers.	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) Move onto decimal numbers to 2 decimal places. Recognise mixed numbers and improper fractions and convert from one to the other.	135.62 + 54.69 190.31 111 Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers. Use known number facts and place value to subtract 6.1 - 0.4 = 5.7 5.7 6.0 $6.1-0.3$ -0.1	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. Solve addition and subtraction problems involving missing numbers.

	subtraction facts for all numbers 1- 10 decimal num to one decimal place)			Find a difference by counting up e.g. $0.5 - 0.31 = 0.19$ This can be modelled on an empty number line (see complementary addition below). +0.09 +0.1 0.31 0.4 0.5	
Year 6	Select an appropriate mental strategy Add and subtract mentally combinations of two and three digit numbers and decimals to one decimal place. Perform mental calculations, including with mixed operations and large numbers. Recall and use + - and subtraction facts for all numbers 1-10 (with decimal numbers to two d. p.)	but using two decimal places as well as whole numbers.	Add and subtract whole numbers and decimals using formal written methods (columnar addition and subtraction) Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions.	Written methods As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. Solve addition and subtraction problems involving missing numbers.

Calculations Policy for Multiplication and Division

To aid in the learning of multiplication and division children should:

- Multiply and divide numbers using concrete objects and pictorial representations.
- Be secure in all multiplication facts, as designated by year group, for progression.
- From Year 2, use inverse of multiplication and division to check accuracy of calculations.
- be supported in all methods, using a range of counting resources such as numicon, cubes, dienes, coins, counters, bead strings, number tracks, number lines, number squares, cuiseneres, dice etc.

	Multiplication and Division	Strategies/Resources	Written	Representations		Problem Solving
	Mental/Recall	(See Appendices for				
		guidance)				
Year	Recall and use doubles of all	Doubling (x2)	*Written methods	a there are the		Solve one-step
1	whole numbers to 10 and	Halving (÷2)	are informal at this		2 + 2 + 2 + 2 + 2 = 10 $2 \times 5 = 10$	problems involving
	corresponding halves.		stage – see mental		2 multiplied by 5	multiplication and
			methods for		5 hops of 2	division, by
	Count in multiples of twos,		expectation of	6 2 4 6 8 10		calculating the
	fives and tens forwards and		calculations			answer using
	backwards.			100_910_100_100_910	5+5+5+5+5=30	concrete objects,
					$5 \times 6 = 30$	pictorial
	Group AND share small				6 groups of 5	representations and
	quantities- understanding the			0 5 10 15 20 25 30	6 hops of 5	arrays with the
	difference between the two			15 ÷ 5 = 3		support of the
	concepts.			15 shared between 5		teacher
	Sharing			• • • • • • • • • • • • • • • • • • • •		
	Grouping					
	Children should apply their					
	counting skills to develop			6 9	12	
	some understanding of			How many 3s 3	15 15+3=5	
	grouping.			in 15?	5	
					1	

	Use of arrays as a pictorial representation for division. 15 ÷ 3 = 5 There are 5 groups of 3. 15 ÷ 5 = 3 There are 3 groups of 5.				
Year 2	Understand that multiplication is commutative but division is not. Understand that multiplication is the inverse of division and vice-versa. Count in steps of 2, 3 and 5 from 0 and when secure start from a different base number. Count in tens from any number, forwards and backwards. Recall and use x and division facts for the 2, 5 and 10 times tables, including recognising odd and even numbers. Derive and use doubles of simple two-digit numbers (numbers in which the ones total less than 10) Calculate mathematical statements for multiplication (using repeated addition) and division with the multiplication	Repeated Addition (e.g. 2+2+2+2) Doubling (x2) Halving (÷2) Use doubles and halves and halving as the inverse of doubling. Using known facts to find related facts	*Written methods are informal at this stage – see mental methods for expectation of calculations Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×), division (÷) and equals (=) signs.	Expressing multiplication as a number sentence using x Using understanding of the inverse and practical resources to solve missing number problems. 7 x 2 = 0 $= 2 x 7$ 7 x $= 14$ $14 = 0 x 7$ x 2 = 14 $14 = 2 x 0x 0 = 14$ $14 = 0 x 0$	Solve problems involving multiplication and division (including those with remainders), using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

	tables and write them using						
	the multiplication (x), division						
	(÷) and equals signs (=).						
Year	Explain/reason that	Doubling (x2)	Write and calculate	Developi	ng written methods usi	ing	Solve problems,
3	multiplication is commutative	Doubling again (x4)	mathematical	understa	nding of visual images		including missing
	but division is not.	Doubling again (x8)	statements for	Develop	onto the grid method		number problems,
		Halving (÷2)	multiplication and	*	10 18	8	involving
	Count from 0 in multiples of 4,	Halving again (÷4)	division using the		0000000000	00000000	multiplication and
	8, 50 and 100 and when	Halving again (÷8)	multiplication tables	3	0000 30 00000 00000000000000	0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0	division (and
	secure start from a different	Partitioning e.g. to multiply	that they know,				interpreting
	base number.	by 7, multiply by 5 and by 2	including for two-		10	8	remainders),
		Moving Digits to	digit numbers times	2	2.0	24	including positive
	Recall and use multiplication	multiply/divide by 10	one-digit numbers,	3	50	2 4	integer scaling
	and division facts for the 3, 4		using informal				problems and
	and 8 times tables.	Using known facts to find	methods and	• <u>÷ = s</u>	igns and missing numb	<u>bers</u>	correspondence
		related facts e.g. 20 x 3 = 60,	progressing to formal	Continue	using a range of equat	ions as in year 2	problems in which n
	Derive and use doubles of all	so 60 ÷ 3 = 20	written methods.	but with appropriate numbers.			objects are connected
	numbers to 100 and		(appears also in	Grouping	I		to m objects
	corresponding halves.		Mental Methods)	How man	ny 6's are in 30?		
				30 ÷ 6 ca	n be modelled as:		
	Derive and use doubles of all			<u> <mark>Becomi</mark></u>	ng more efficient usin	<u>g a number line</u>	
	multiples of 50 to 500.			Children	need to be able to part	ition the	
				dividend	in different ways.		
	Write and calculate			48 ÷ 4 = 1	12		
	mathematical statements for				+40 + 9	2	
	multiplication and division				10 groups 📕	2 groups	
	using the multiplication tables			<u>न Rema</u>	<u>inders</u>		
	that they know, including for			49 ÷ 4 = 1	12 r1		
	two-digit numbers multiplied			+	+40 + 8	+1	
	by one-digit numbers, using				10 groups	2 groups	
	mental methods.			Sharing –	49 shared between 4.	How many left	
				over?			
				Grouping	g – How many 4s make	49. How many	
				are left o	ver?		

				Plac	e valu	ie counters can be	e used to support	
				child	dren a	apply their knowle	edge of grouping.	
Year 4	Recall and use multiplication and division facts for multiplication tables up to 12 x 12. Count in multiples of 6, 7, 9, 25 and 1000 from 0 and when secure start from a different base number. Use knowledge of the 3 times table and doubling to derive and recall the 6 times table. Use partitioning to double and halve any number, including decimals to one decimal place. Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers. Recognise and use factor pairs and commutativity in mental calculations.	Doubling (x2) Doubling again (x4) Doubling again (x8) Halving (÷2) Halving again (÷4) Halving again (÷8) Doubling/halving can also be used for the relationships between 3, 6 and 12. Partitioning e.g. to multiply by 13, multiply by 10 and by 3 To multiply by 9, multiply by 10 and subtract '1 lot' of the multiple. Moving Digits to multiply/divide by 10 and 100. Using known facts to find related facts e.g. 200 x 3 = 600, so 600 ÷ 3 = 200	Multiply two-digit and three-digit numbers by a one- digit number using informal methods and progressing to formal written layout. Divide numbers up to 3 digits by a one-digit number using informal methods progressing to formal written method of short division and interpret remainders appropriately for the context.		10 3		8 8 8 8 24 24	Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, <i>division</i> (<i>including</i> <i>interpreting</i> <i>remainders</i>), integer scaling problems and harder correspondence problems such as n objects are connected to m objects
1				1				

Year 5	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. Count forwards or backwards in steps of powers of 10 (10, 100, 1000 etc.) Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000. Recall prime numbers up to 19 and derive prime numbers up to 100. Recall square numbers up to 144 and derive cube numbers. Apply understanding that a remainder is a fraction of a whole.	Doubling (x2) Doubling again (x4) Doubling again (x8) Halving (÷2) Halving again (÷4) Halving again (÷4) Halving again (÷8) Doubling/halving can also be used for the relationships between 3, 6 and 12. Partitioning e.g. to multiply by 24, multiply by 20 and by 4. To multiply by 99, multiply by 100 and subtract '1 lot' of the multiple. Moving Digits to multiply/divide by 10, 100 and 1000. Use multiplication/division facts to find equivalent decimal and decimal fraction remainders. e.g. 98 ÷ 4 = 24r2	Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers. Divide numbers up to 4 digits by a one-digit number using a formal written method of short division and interpret remainders appropriately for the context.	× Same me	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates
	Apply understanding that a remainder is a fraction of a whole. Use partitioning to double or halve any number, including decimals to two decimal places.	Use multiplication/division facts to find equivalent decimal and decimal fraction remainders. e.g. 98 ÷ 4 = 24r2 = 24r2/4 = 24 ½ = 24.5 Using known facts to find related facts				

Year	Associate a fraction with	Doubling (x2)	Multiply multi-digit			W.	<i>T</i>	941 V		Solve problems	
6	division and calculate decimal	Doubling again (x4)	numbers up to 4	28	Х	1000	300	40	2	involving addition	
	fraction equivalents. (e.g.	Doubling again (x8)	digits by a two-digit							subtraction.	
	0.375 for a simple fraction –	Halving (÷2)	whole number using		10	10000	3000	400	20	multiplication and	
	3/8)	Halving again (÷4)	a formal written		-		-			division	
		Halving again (÷8)	method of long		8	8000	2400	320	16		
	Identify common factors,		multiplication.								
	common multiples and prime	Doubling/halving can also be									
	numbers.	used for the relationships	Divide numbers up to								
		between 3, 6 and 12.	4 digits by a two-digit								
	Use partitioning to double or		number using a	2	8		2 3 1	L			
	halve any number, including	Partitioning e.g. to multiply	formal written				134	12			
	decimals to two places.	by 3.5, multiply by 3 and by 0.5. To multiply by 1.9, multiply by 2 and subtract '0.1 lot' of the multiple. Moving Digits to multiply/divide by 10, 100	method of short division where appropriate, interpreting remainders according to the context. Use written division			x					
					10720						
				24156							
				F							
				division							
		and 1000.	methods in cases		sion						
		Use multiplication (division	bas up to two	T (
		facts to find aquivalent				-	1 3	3 3	8		
		decimal and decimal fraction	uecimai places.		8	1	57	0	4		
		remainders og 24.2/8 –			0	1	~		1		
		0 375								—	
		(1/4 - 0.25, 1/8 - 0.125, so)				_		-			
		$3/8 = 0.125 \times 3 = 0.375$					5 12	364	1.0		
		5/0 - 0.125 × 5 - 0.575					_1	54			
		Using known facts to find						75			
		related facts						103	5		
									0 1		
									70		
							100	15.0	0		
	1										